Weighted Kernel Regression for Predicting Changing Dependencies
نویسندگان
چکیده
Consider the online regression problem where the dependence of the outcome yt on the signal xt changes with time. Standard regression techniques, like Ridge Regression, do not perform well in tasks of this type. We propose two methods to handle this problem: WeCKAAR, a simple modification of an existing regression technique, and KAARCh, an application of the Aggregating Algorithm. Empirical results on artificial data show that in this setting, KAARCh is superior to WeCKAAR and standard regression techniques. On options implied volatility data, the performance of both KAARCh and WeCKAAR is comparable to that of the proprietary technique currently being used at the Russian Trading System Stock Exchange (RTSSE).
منابع مشابه
Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall
We propose exponentially weighted quantile regression (EWQR) for estimating time-varying quantiles. The EWQR cost function can be used as the basis for estimating the time-varying expected shortfall associated with the EWQR quantile forecast. We express EWQR in a kernel estimation framework, and then modify it by adapting a previously proposed double kernel estimator in order to provide greater...
متن کاملPredicting Spatio-Temporal Propagation of Seasonal Influenza Using Variational Gaussian Process Regression
Understanding and predicting how influenza propagates is vital to reduce its impact. In this paper we develop a nonparametric model based on Gaussian process (GP) regression to capture the complex spatial and temporal dependencies present in the data. A stochastic variational inference approach was adopted to address scalability. Rather than modeling the problem as a timeseries as in many studi...
متن کاملDetermining Effective Factors on Land Surface Temperature of Tehran Using LANDSAT Images And Integrating Geographically Weighted Regression With Genetic Algorithm
Due to urbanization and changes in the urban thermal environment and since the land surface temperature (LST) in urban areas are a few degrees higher than in surrounding non-urbanized areas, identifying spatial factors affecting on LST in urban areas is very important. Hence, by identifying these factors, preventing this phenomenon become possible using general education, inserting rules and al...
متن کاملPredicting the Young\'s Modulus and Uniaxial Compressive Strength of a typical limestone using the Principal Component Regression and Particle Swarm Optimization
In geotechnical engineering, rock mechanics and engineering geology, depending on the project design, uniaxial strength and static Youngchr('39')s modulus of rocks are of vital importance. The direct determination of the aforementioned parameters in the laboratory, however, requires intact and high-quality cores and preparation of their specimens have some limitations. Moreover, performing thes...
متن کاملCommon and Discriminative Subspace Kernel-Based Multiblock Tensor Partial Least Squares Regression
In this work, we introduce a new generalized nonlinear tensor regression framework called kernel-based multiblock tensor partial least squares (KMTPLS) for predicting a set of dependent tensor blocks from a set of independent tensor blocks through the extraction of a small number of common and discriminative latent components. By considering both common and discriminative features, KMTPLS effec...
متن کامل